P(1/2)=2x^2-3x-6

Simple and best practice solution for P(1/2)=2x^2-3x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(1/2)=2x^2-3x-6 equation:



(1/2)=2P^2-3P-6
We move all terms to the left:
(1/2)-(2P^2-3P-6)=0
We add all the numbers together, and all the variables
-(2P^2-3P-6)+(+1/2)=0
We get rid of parentheses
-2P^2+3P+6+1/2=0
We multiply all the terms by the denominator
-2P^2*2+3P*2+1+6*2=0
We add all the numbers together, and all the variables
-2P^2*2+3P*2+13=0
Wy multiply elements
-4P^2+6P+13=0
a = -4; b = 6; c = +13;
Δ = b2-4ac
Δ = 62-4·(-4)·13
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{61}}{2*-4}=\frac{-6-2\sqrt{61}}{-8} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{61}}{2*-4}=\frac{-6+2\sqrt{61}}{-8} $

See similar equations:

| 2(x+4)-(8-x)=5 | | 6y=-y | | x÷4-3=2 | | 42x²=50x²-20x | | x^2-110x+1500=0 | | (11x)+13=156 | | 2(x+4)-(8-×)=5 | | P(2)=x^2-6x+1 | | 3x+3=5x-4 | | x^2-160x+3000=0 | | 4(x+3)-2=34 | | X+4/9+x=6/5 | | F(4)=1/2x+9 | | -9+6X=-7x | | x2+4x-12= | | 2v+10=4v-24 | | 5w=13w-24 | | 3v+30=4v+19 | | 4u=2u+34 | | 12y=11y+7 | | 6z-18=z+27 | | F-4=9x+29 | | 2x+3/4=5x+6/7 | | 8.6+9=7-1x | | 1z+7/3=-8 | | 5x-9+x=2-73 | | 14x+19-13x=12 | | 33+9c=-7(6c-2) | | 3(9+2d)=24 | | 0.1x+50=0.25x+35 | | 9f-3+7=18 | | Y=24+2x-x^2 |

Equations solver categories